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Some exact solutions to the forward Chapman-Kolmogorov equation are derived for processes driven by
both Gaussian and compound Poisson �shot� noise. The combined action of these two forms of white noise is
analyzed in transient and equilibrium conditions for different jump distributions and additive Gaussian noise.
Steady-state distributions with power-law tails are obtained for exponentially distributed jumps and multipli-
cative linear Gaussian noise. Two applications are discussed: namely, the virtual waiting-time or Takàcs
process including Gaussian oscillations and a simplified model of soil moisture dynamics, in which rainfall is
modeled as a compound Poisson process and fluctuations in potential evapotranspiration are Gaussian.
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I. INTRODUCTION

High-dimensional dynamical systems can be often studied
in terms of a single representative variable and separating an
internal deterministic dynamics from random noises account-
ing for external fluctuations �1,2�. The nature of such exter-
nal forcings can be very different, according to their tempo-
ral regime and intensity distribution, and in some cases
multiple forms of noise may coexist. A very typical case
arises when fluctuations acting continuously in time are
modeled using a Gaussian noise, which can be either addi-
tive or multiplicative �2–4�, while random jumps that occur
instantaneously are described by means of a compound Pois-
son process �5–8�. Such systems, which will be referred to as
jump-diffusion processes, have been analyzed in various
fields. In stochastic finance, for example, they have been
used to describe the joint action of small, frequent transac-
tions and rare, large movements of money. The same models
apply in general to problems related to queuing theory and
storage models �5,6�. In physics, they have been adopted to
study mechanisms of noise-driven transport—e.g., ratchet-
type models �7,9,10�. In neurophysiology, the membrane po-
tential of a single neuron has been modeled by coupling an
Ornstein-Uhlenbeck process �Gaussian noise�, which defines
the nerve-cell voltage from its resting level, to a renewal
process �Poisson noise�, which determines the spike trains of
the action potential �11–13�. Jump-diffusion processes have
also applications in population dynamics �14�, in hydrology
to model soil water balance �see �15� and Sec. IV B�, and in
the general theory of stochastic processes �16–18�. Despite
their wide interest, however, few analytical solutions have
been proposed so far.

The dynamics of the jump-diffusion system under analy-
sis can be described using a Langevin equation

ẋ = f„x�t�… + g„x�t�…��t� + I�t� , �1�

where f�x� and g�x� are deterministic functions of the state
variable x�t�, ��t� is a Gaussian �-correlated noise of zero

mean and intensity �2—i.e., ���t��=0 and ���t���u��
=2�2��t−u�—and I�t� is a compound Poisson noise, defined
as

I�t� = �
k=1

N�t�

zk��t − tk� , �2�

where N�t� is a Poisson counting process with frequency �
�e.g., the mean number of � impulses per unit time� and �zk	
are the jump sizes distributed according to a probability den-
sity function b�z�. When necessary, Eq. �1� will be inter-
preted in the Stratonovich sense. Accordingly, Eq. �1� corre-
sponds to the forward Chapman-Kolmogorov equation �1,16�

�

�t
p�x,t� = −

�

�x

� f�x� + �2g�x�

d

dx
g�x��p�x,t�

+ �2 �2

�x2 �g�x�2p�x,t�� − �p�x,t�

+ �
−�

+�

�b�y�p�x − y,t�dy , �3�

which expresses the evolution of the transition probability
density function �PDF� of x, p�x , t�. In the following, some
special forms of Eq. �3� will be analyzed. In particular, we
will distinguish between additive �Sec. II� and multiplicative
�Sec. III� Gaussian noise. In the first case, some examples of
jump distributions �e.g., two-sided exponential, gamma, and
exponential distribution� are studied when the drift is either
constant or linear, while the multiplicative noise is studied
for linear drift and exponentially distributed jumps. Two pos-
sible applications of the results obtained in the previous sec-
tions are discussed in detail in Sec. IV.

II. ADDITIVE GAUSSIAN NOISE

In a variety of problems, external fluctuations can be
taken into account by simply adding a noise source to the
deterministic component, f�x�—that is, assuming g�x�=1 in
Eq. �1� �5,10�. Provided that f�x� attains a finite value when
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x tends to ±�, while p�x , t� and its derivatives tend to zero,
Eq. �3� can be Fourier transformed as

�

�t
p*�s,t� = is�f�x�p�x,t�	* − �2s2p*�s,t� + ��b*�s� − 1�p*�s,t� ,

�4�

where p*�s , t� is the characteristic function of p�x , t�, i.e.,

p*�s,t� = �
−�

+�

eixsp�x,t�dx , �5�

and �h�x , t�	* indicates the Fourier transform of the function
inside the brackets—i.e., h*�s , t�. The two particular cases of
constant and linear drift are now studied in detail, using
simple jump distributions b�z� that allow one to obtain exact
solutions of Eq. �3�.

A. Constant drift

Assuming constant drift, f�x�=k, the characteristic func-
tion of the PDF becomes p*�s , t�= p*�s ,0�p1

*�s , t�p2
*�s , t�, with

p*�s ,0�=exp�ix0s�, given that p�x ,0�=��x−x0�, and

p1
*�s,t� = exp��iks − �2s2�t� ,

p2
*�s,t� = exp���b*�s� − 1�t	 . �6�

Therefore the solution can be represented by the convolution
between the transient PDF of the Wiener process with drift,
whose characteristic function is p*�s ,0�p1

*�s , t� �8�, and the
PDF of the compound Poisson process. A similar result was
obtained in �17� in the absence of drift.

The first case we consider is that of jumps extracted from
a two-sided exponential distribution, also called a Laplace or
Pascalian distribution, b�z�=� exp�−��z�� /2 ���0�, so that
p2�s , t�=exp�−�s2t / ��2+s2��. In this case, the mean and vari-
ance vary linearly in time as 	t=x0+kt and vart=2t��2

+� /�2�, respectively. Odd cumulants are zero—i.e., p�x , t� is
symmetric—while even cumulants of order higher than 2, as
expected, are not affected by the Gaussian noise and read

m=m!�t /�m. Furthermore, the kurtosis is equal to �19�

� = 3 +
6�/�4

t��/�2 + �2�2 , �7�

which means that for finite time the distribution has tails that
are heavier than a Gaussian. It is easy to see that in the
limiting case of no Gaussian noise �i.e., �2=0� and both �
and �2 tending to +� with a finite ratio, the solution tends to
a Gaussian distribution �20�.

A quite general choice for positive definite jumps �z�0�
is the Gamma distribution, i.e., b�z�=�aza−1 exp�−�z� /��a�,
where ��·� is the gamma function �19� and ��0 and a�0
are two parameters. In this case,

p2
*�s,t� = exp�− �t +

�at

�� − is�a� , �8�

and the mean and variance of x depend on time as 	t=x0
+ �k+a� /��t and vart= t�2�2+a��1+a� /�2�, respectively,

while the cumulants of order higher than 2 are 
m= �a+m
−1�!�t / ��a−1�!�m�. The PDF is therefore asymmetrical
�e.g., positive skewness�, because of the asymmetry in the
jumps, and the kurtosis is

� = 3 +
6a + 11a2 + 6a3 + a4

t��a + a2�� + 2�2�2�2� , �9�

which is again greater than 3. It is interesting to note that in
the particular case when a=1—that is, when the gamma dis-
tribution reduces to an exponential one, all the even cumu-
lants correspond to those of the previous case, Eq. �7�, with
jumps distributed as a two-sided exponential PDF.

It is clear that the constant drift only affects the means of
the distributions but not their shape. In fact, using the coor-
dinate transformation =x−kt and �= t, the problem with
constant drift can be reduced to a sum of noises without any
deterministic component in the new variables  and �. This
latter case was already discussed in part in �17� within a
more general context.

B. Linear drift

Another paradigmatic case is that of linear drift, f�x�
=−kx �k�0�, which, in the absence of the Poisson noise, is
the well-known Ornstein-Uhlenbeck process. A general solu-
tion of the problem with both the noises can be written again
as a product of characteristic functions p*�s ,0�p1

*�s , t�p2
*�s , t�,

with now

p1
*�s,t� = exp�ix0se−kt +

�2s2

2k
�e−2kt − 1�� ,

p2
*�s,t� = exp
�

s

�

ku
�b*�u� − 1�du

� exp
− �
s exp�−kt�

�

ku
�b*�u� − 1�du , �10�

where u is a dummy variable.
Assuming b�z� to be a two-sided exponential distribution,

the function p2
*�s , t� becomes

p2
*�s,t� = ��2 + s2e−2kt

�2 + s2 ��/2k

, �11�

which leads to mean and variance 	t=x0e−kt and vart= �1
−exp�−2kt�����+�2�2� / �k�2��, respectively. Odd cumulants
are zero �i.e., symmetric PDF�, while even cumulants higher
than 2 are given by


m = �1 − e−mkt�
�m − 1�!�

k�m . �12�

In the absence of Gaussian noise �e.g., �=0�, the steady-state
PDF, obtained by inverting p*�s ,0�p2

*�s , t� �21� for t→�,
reads
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p�x� =
2��x�−��1−�K����x��

����1

2
− �� , �13�

where �= �1−� /k� /2, K��·� is the modified Bessel function
of the second kind, and ��·� is the gamma function �19�. The
PDF is symmetric, and when ��0 it decays as a
power-exponential distribution �22�, since for �x�→ +� it
tends to zero as �x��/�2k� exp�−��x��. At the origin, it has a
finite value when ��0—i.e., ��k—while it goes to +�
when k��. In particular, when �=0—i.e., �=2k—the PDF
has the same distribution as the one of the jumps that is a
two-sided exponential PDF, p�x�=�e−��x� /2; this fact was al-
ready noted in �23�.

Using a one-sided exponential distribution for positive
jumps, the case of linear drift leads to

p2
* = ��2 + s2e−2kt

�2 + s2 ��/2k

� exp�i��tan−1�s/��

− tan−1�se−kt/���	 , �14�

while p1
*�s , t� reads as in Eq. �10�. The mean in this case

varies as 	t=x0e−kt+ �1−e−kt�� / �k��, the variance is vart

= �1−exp�−2kt�����+�2�2� / �k�2��, and the other cumulants
are expressed by Eq. �12�. This means that the even cumu-
lants of the process with jumps distributed as one-side and
two-sided exponential PDF’s coincide. In the special case
when �=0, the process is always positive and provided that
� /k�1 the steady-state PDF is, as well known, a gamma
distribution �24,25�

p�x� =
��/k

���/k�
x�/k−1e−�x. �15�

III. MULTIPLICATIVE NOISE

The state-dependent effect of external Gaussian fluctua-
tions is commonly described by the so-called multiplicative
noise �2–4�. Differently from the additive noise, the multi-
plicative one may introduce substantial changes in the prop-
erties of the system, such as noise-induced phase transitions
�2� and the appearance of power-law tails �18,22,26–28�. The
case of noise with state-dependent jumps is also interesting
�29�, but it will not be discussed here.

Assuming a multiplicative Gaussian noise and random
jumps exponentially distributed, Eq. �3� becomes

�

�t
p�x,t� = −

�

�x

� f�x� + �2g�x�

d

dx
g�x��p�x,t�

+ �2 �2

�x2 �g2�x�p�x,t�� − �p�x,t�

+ ��
0

x

�e−��x−z�p�z,t�dz , �16�

which can be written in the form �1�

�

�t
p�x,t� = −

�

�x
J�x,t� , �17�

where the probability current J�x , t� is

J�x,t� = � f�x� + �2g�x�
d

dx
g�x��p�x,t� − �2 �

�x
�g2�x�p�x,t��

+ ��
0

x

e−��x−z�p�z,t�dz . �18�

Given the mathematical complexity of Eq. �16�, transient
solutions are not considered here, but the attention is focused
on the steady-state conditions, in which case the current is
constant. Hereinafter, it will be assumed that either a natural
boundary or a reflecting barrier is present at x=0, so that the
probability current vanishes in steady-state conditions �2�.

We analyze in particular the case of linear drift, f�x�
=−kx, and linear multiplicative Gaussian noise, g�x�=x. In
this case, the vanishing probability current leads to the ordi-
nary integro-differential equation

J�x� = ��2 − k�xp�x� − �2 d

dx
�x2p�x�� + ��

0

x

e−��x−z�p�z�dz = 0.

�19�

Laplace transforming the previous relation and using the
condition �xp�x��x=0=0 gives

�2s
d2

ds2 p̃�s� + ��2 − k�
d

ds
p̃�s� −

�

� + s
p̃�s� = 0, �20�

where p̃�s� is the Laplace transform of p�x�. The solution of
Eq. �20� is �30�

p̃�s� = C1�1 +
s

�
�2F1�� + 1,� + 1,2;1 + s/�� , �21�

where C1 is a constant determined by the condition p̃�0�=1,

2F1�· , · , · ; · � is the hypergeometric function �19� and

� =
− k + �k2 + 4��2

2�2 ,

� =
− k − �k2 + 4��2

2�2 . �22�

Going back to the original variable x �31�, the solution reads

p�x� = Ce−�xx�−1L−�−1
−�+���x� , �23�

where C is a constant of normalization and Ln
m�·� is the gen-

eralized Laguerre polynomial �19�. A remarkable property of
p�x� is that, since it decays at infinity as a power law—e.g.,

p�x��x−�1+k/�2� when x→ +� �19�—its extremes are scale
invariant �22,26–28�. Figure 1 represents in a log-log plot the
tails of the PDF’s for different values of the noise strength,
showing the power-law decay for high values of x with slope
that tends to −1 as � increases. Interestingly, in the absence
of Gaussian noise, the PDF loses this property and Eq. �23�
reduces to the gamma distribution of Eq. �15�. On the con-
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trary, when the Poisson noise is turned off, the system is the
well-known multiplicative Gaussian process the solution of
which is a log-normal distribution with mode exponentially
decaying to zero �the process does not reach a steady state�.

Figure 2 shows two time series �obtained following the
numerical scheme reported in �32�� and the corresponding
PDF’s, Eq. �23�. Figure 2�b�, in particular, represents a very
intermittent case, in which the drift is zero and both the rate
of occurrence and the mean size of the jumps are very low,
so that the dynamics is mainly driven by the Gaussian noise.
However, it is the presence of the Poisson process that allows
the system to reach a steady state by providing a repulsion
from the origin. Thus, the Poisson noise, coupled to the mul-

tiplicative Gaussian noise, stabilizes the system generating
intermittent bursts with power-law tails, with a mechanism
that is similar to the ones discussed in �18,22,26�. In the
limiting case where the Poisson process has very frequent
events �e.g., high values of �� and small jumps �e.g., high
values of ��, the Langevin equation tends to ẋ=� /�−kx
+x�t, which was studied in �27�; the corresponding steady-
state PDF �Eq. �23�� tends to

p�x� = Cx−2−k/�2
exp�− �/���2x�� , �24�

which can be normalized provided that k�−�2.

IV. APPLICATIONS

A. Virtual waiting-time process

The so-called Takàcs process appears in queuing and stor-
age problems �8� and in stochastic input-output systems, as
discussed in �5,6�. Assuming, for example, that the dynamics
of the stock level x�t� is characterized by a constant decay
rate k plus a superposition of continuous small inflows and
outflows, modeled as a Wiener process, and large instanta-
neous inflows, described by a Poisson process with rate �
and with size exponentially distributed with mean 1/�, the
probability current in stationary conditions �e.g., Eq. �18�� is

J�x� = − kp�x� − �2 �

�x
p�x� + ��

0

x

e−��x−z�p�z�dz = 0.

�25�

Solving the equation by Laplace transform leads to the solu-
tion �5�

p�x� =
k − �/�

2�2a
��k − ��2 + a�exp�− k − ��2 − a

2�2a
x�

− �k − ��2 − a�exp�− k − ��2 + a

2�2a
x�� , �26�

where a=��k−��2�2+4��2. For the system to be stable and
reach a steady state, the condition � /��k must hold �8�.
Examples of two different PDF’s for different � are shown in
Fig. 3. As � decreases, the value of the PDF at zero moves
towards higher values, and for �=0 the PDF becomes expo-
nential with an atom of probability in x=0, which is the
classic solution of Takàcs �8�.

B. Daily soil moisture dynamics

Simple but realistic models capturing the essential dy-
namics of the terrestrial water balance are important to ana-
lyze the linkage between soil moisture and the climate, soil,
and vegetation system. Although in previous studies
�25,33–35� the only stochastic component in soil moisture
dynamics was assumed to be rainfall intermittency, in what
follows we provide a first attempt to include also fluctuations
in potential evapotranspiration.

Considering the soil as a constant storage capacity w0, the
daily soil moisture balance at a point is expressed as �15,25�

FIG. 1. Log-log plot showing the heavy tails of the PDF in the
case of f�x�=−kx and g�x�=x with positive exponentially distrib-
uted jumps. The slope of the curves �e.g., −1−k /�2� tends to −1
with increasing � �in the figure � varies from 0.1 to 0.8 with steps
of 0.1�.

FIG. 2. Examples of time series and corresponding PDF’s for
linear drift, f�x�=−kx, and multiplicative noise, g�x�=x. Parameters
are �a� k=0.05, �=0.25, 1 /�=1.5, �=0.1 and �b� k=0, �=0.01,
1 /�=0.1, �=0.25.
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w0
dẋ

dt
= I„x�t�,t… − E„x�t�,t… , �27�

where x is the effective relative soil moisture defined be-
tween 0 �e.g., dry soil� and 1 �e.g., soil saturation� �25,33�.
Infiltration I(x�t� , t) is the amount of rainfall entering into the
soil, while E(x�t� , t) is the evapotranspiration rate. Although
Eq. �27� is modeled in continuous time, the soil water
balance—e.g., Eq. �27�—is interpreted at the daily time scale
�15,25,33,34�.

At this scale, precipitation can be idealized as a com-
pound Poisson process, whose events, occurring with rate �,
carry a random amount of water extracted from an exponen-
tial distribution with mean �. An example of daily rainfall
values, measured at Duke Forest, NC �USA�, is shown in
Fig. 4�a�. For the sake of simplicity, canopy interception is
ignored here �see �33,34� for details�. Infiltration is modeled
assuming that the soil accommodates all the incoming rain-
fall if the rainfall depth is smaller than the available storage
capacity, 1−x; otherwise, the rainfall in excess is instanta-
neously lost as runoff and drainage.

Evapotranspiration E(x�t� , t) is assumed to be a function
of both soil moisture x and potential evapotranspiration
Ep�t�—i.e., the maximum rate of transpiration achievable by
the extant vegetation under well-watered conditions �x=1�.
A simple way to model evapotranspiration is to assume
E(x�t� , t) to decrease linearly from Ep�t� at x=1 to zero at
x=0 �25�. However, as is apparent from Fig. 4�b�, potential
evapotranspiration fluctuates from day to day depending on
climatic conditions �mainly solar radiation, air temperature,
and air humidity�. A suitable way to model such fluctuations
is to assume Ep�t� to be the sum of a mean potential evapo-

transpiration Ēp plus a white Gaussian noise E��t� of inten-
sity �� �we refer to �15� for details�.

With these assumptions, Eq. �27� can be normalized to
become

dẋ

dt
= I„x�t�,t… − �x�t� + x�t���t�� , �28�

where x�t�, with = Ēp /w0, is the deterministic component
of evapotranspiration and x�t���t� is the stochastic forcing of
E, where the new noise intensity is �=�� /w0. Following
�33�, the amount of water carried by each rainfall event is
assumed to be extracted from an exponential PDF with mean
1/�=� /w0. Although the problem is similar to the case pre-
sented in Sec. III, Eq. �28� describes now a process that is
bounded at x=1 because of saturation. However, as dis-
cussed in �33�, the presence of the bound at x=1 �which acts
as a reflecting barrier� only rescales the PDF of x in the range
�0, 1�. Thus the solution is the same as Eq. �23�, where the
constant is now determined by the condition �0

1p�x�dx=1.
We note that the interpretation of the multiplicative noise in
Eq. �28� must be according to Stratonovich, since the ap-
proximation of external fluctuations in evapotranspiration as
a white noise follows from an adiabatic approximation of the
weakly colored �differentiable� signal shown in Fig. 4�b� �see
�15� for details�.

Examples of two series of modeled soil moisture using
different values of � are shown in Fig. 5 along with their
PDF’s. While in the time series the effect of the fluctuations
in the potential evapotranspiration is hardly visible, unless
the value of � is chosen unreasonably high, the PDF’s show
some interesting differences. Increasing the noise strength
moves the mode of the PDF towards lower values, as is
common in systems with multiplicative noise �3�, while the
typical increase of the variance caused by increased noise is
in part prevented by the presence of the bound in x=1. Over-
all, the changes induced by evapotranspiration are relatively

FIG. 3. Different PDF’s for the virtual waiting-time problem for
noise intensities �=0.1 �solid line� and 0.4 �dashed line� and corre-
sponding time series. Common parameters: �=0.1, 1 /�=1, and k
=0.5.

FIG. 4. Time series in the year 2001 of �a� precipitation and �b�
potential evapotranspiration from Duke Forest, NC �USA�.

PROBABILISTIC DYNAMICS OF SOME JUMP-… PHYSICAL REVIEW E 73, 026108 �2006�

026108-5



small, despite the fact that its potential variability is similar
to the one of the rainfall process �15�, suggesting that rainfall
variability is more effective than fluctuations in evapotrans-
piration, the action of which is also reduced by their multi-
plicative nature.

Once the probability distribution is obtained, an equation
for the dynamics of the mean water balance �i.e., the mean of
x� can be derived. The long-term water balance allows one to
distinguish the long-term effect of each single component of
the balance expressed by Eq. �28�, describing how the rain-
fall input is partitioned between the different soil water
losses �34�. Multiplying Eq. �3� by x and integrating between
0 and 1 leads to

d�x�t

dt
= �

0

1

x
�

�t
�p�x,t��dx = − �

0

1

x
�

�x
J�x,t�dx , �29�

which, in stationary conditions, only depends on the prob-
ability current

− �
0

1

x
d

dx
J�x�dx = �− xJ�x��0

1 + �
0

1

J�x�dx = − �
0

1

xp�x�dx

+ �
0

1

�e−�x��
0

x

e�zp�z�dz�dx

+ �
0

1

�2xp�x�dx − �
0

1 d

dx
��2x2p�x��dx = 0.

�30�

Solving the integrals with respect to x and reorganizing the
terms gives

�

�
− � − �2��x� −

�

�
�

0

1

e−��1−z�p�z�dz − �2�p�x��x=1 = 0.

�31�

The first term is the mean rainfall rate, which is the input of
water into the system. The second represents the averaged
losses due to evapotranspiration, and the last two terms are
related to the presence of the bound at x=1. In particular, the
third term describes the averaged losses caused by leakage
and runoff, while the last one, which is in general negligible,
is a spurious term introduced by the interaction between the
bound and negative tail of the potential evapotranspiration
modeled with a Gaussian distribution.

Interestingly, Eq. �31� shows the physical effects of the
spurious drift, �2�x�, resulting from the necessary Stratonov-
ich interpretation of the fluctuations in potential evapotrans-
piration to account for their temporal autocorrelation. Here
we only notice that the effect is one of a slight reduction of
the transpiration losses, when compared to a similar case
with same mean but no fluctuations in potential evapotrans-

piration �e.g., constant Ep= Ēp=0.5 cm d−1� �25�, followed
by a readjustment of the partitioning between the different
soil water losses. A detailed discussion of the hydrologic
implications of Eq. �31� is presented elsewhere �15�.

V. CONCLUSIONS

Dynamical systems driven by Gaussian and Poisson
noises �jump-diffusion processes� have been studied here for
both additive and multiplicative Gaussian noise. Formal so-
lutions �characteristic functions and cumulants� of the for-
ward Chapman-Kolmogorov equation have been obtained
for general jump distributions in case of constant and linear
drift with additive Gaussian noise and jumps distributed as
two- and one-sided exponential PDF’s.

The case of linear Gaussian multiplicative noise with ex-
ponentially distributed jumps has been solved in stationary
conditions. Such a solution is characterized by power-law
tails, resulting from the interaction of the Poisson noise,
which ensures repulsion of the system from the origin, with
multiplicative Gaussian fluctuations. The same solution, with
slight modifications, also provides a simplified description of
the daily soil moisture dynamics in the presence of both
rainfall variability and climatic fluctuations.
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FIG. 5. Top: realizations of soil moisture with different values
of noise intensity ��=0.8, solid line, and �=0.4, dashed line�. Bot-
tom: soil moisture PDF’s for � varying from 0.2 �solid line� to 0.8
�dotted line� with steps of 0.2. Common parameters: �=0.1 d−1,

w0=9 cm, �=1.5 cm ��=6�, and Ēp=0.4 cm d−1.
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